Thermoelectric Properties of Transition-Metal Pnictides with Marcasite and Pyrite Structures*

Minoru Nohara

Department of Physics, Okayama University

The chief ingredients in the making of a thermoelectric material are large thermoelectric power, metallic resistivity, and low thermal conductivity. Here, I will demonstrate that the transition-metal pnictides $FeAs_2$ and $PtSb_2$ exhibit a semiconductor-to-metal transition upon chemical substitution and enhanced thermoelectric properties in the metallic state.

FeAs₂ crystallizes in an orthorhombic marcasite structure, while PtSb₂ in a cubic pyrite structure. The structures consist of FeAs₆ or PtSb₆ octahedra. The FeAs₆ are linked on the edge, while the PtSb₆ at the corner. The octahedra are tilted to form diatomic molecule, namely As₂ or Sb₂, which favors an electron count of $[As_2]^{-4}$ and $[Sb_2]^{-4}$ in order to fill up the π^* molecular orbital. Thus an electron count of Fe⁴⁺ (3d⁴) and Pt⁴⁺ (5d⁶), together with the crystalline-electric-field splitting of the d orbital in orthorhombic or cubic symmetry, accounts for the semiconducting natures of FeAs₂ and PtSb₂.

Both compounds exhibits a transition from semiconducting to metallic state upon chemical substitution, namely $Fe(As_{1-x}Se_x)_2$ and $Pt_{1-x}Ir_xSb_2$. The former exhibits n-type transport, while the latter p-type. For $Fe(As_{1-x}Se_x)_2$ with x = 0.05, a resistivity of 2 m Ω cm and thermoelectric power of 120 μ V/K at room temperature results in a power factor of approximately 10 μ W/cmK². For $Pt_{1-x}Ir_xSb_2$ with x = 0.01, we estimate a power factor of approximately 35 μ W/cmK² using a room-temperature resistivity of 0.5 m Ω cm and thermoelectric power of approximately 100 μ V/K. Together with the reduced thermal conductivity, dimensionless figure of merit *ZT* exceeds 0.1 for $Pt_{1-x}Ir_xSb_2$ at room temperature.

Thus, transition-metal pnictides provide an appealing playground for the development of good thermoelectric materials.

*This work was done in collaboration with K. Kudo, S. Nakano, Y. Nishikubo at Okayama University.