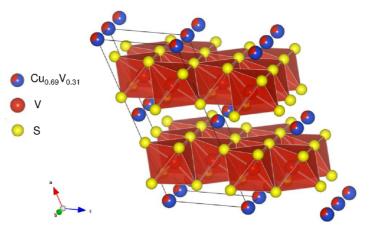
Structural, magnetic and electronic properties of new 2D compounds with VS₂ layers.

Y. Klein¹, H. Moutaabbid¹, A. Sellam¹, A. Soyer¹, D. Taverna¹, D. Pelloquin², M. D'Astuto¹,


G. Rousse¹, J. Vigneron³, A. Etcheberry³, and A. Gauzzi¹

¹Institut de Minéralogie et Physique des Milieux Condensés, Paris, France ²Laboratoire CRISMAT, Caen, France ³Institut Lavoisier Versailles, Versailles, France

2D transition metal dichalcogenides are regarded as an interesting playground to study the stability and the properties of the charge density wave (CDW) in a hexagonal lattice. One example is the metastable compound $1T-VS_2$, with the CdI₂-type structure, in which an incommensurate CDW develops when prepared from the Li-extraction of LiVS₂. As a consequence, the system is characterized by a "bad-metallic" electrical resistivity [1]. We have recently stabilized $1T-VS_2$ with a high pressure (HP) technique and the latter compound exhibits rather a semi-metallic resistivity. This is in accordance with electronic diffraction experiments evidencing a suppression of the CDW and suggests different electronic states of vanadium in the HP phase and the Li-extracted phase. The electronic state is then strongly connected to pressure effects.

Using HP synthesis, other VS₂-based compounds with various physical properties, such as $Cu_{1-x}V_{2+x}S_4$ [2] and $Sr_3V_5S_{11}$ can also be stabilized. In the first compound, VS₂ layers are connected together through Cu-chains

which impose a strong distortion to the hexagonal lattice (see the figure). The resistivity is metallic-like and suggests an intermediate valence state of the vanadium cation. The second compound is characterized by V^{4+} electronic states in the VS₂ layers, which is in accordance with the semiconducting-like resistivity.

[1]: M. Mulazzi et al., Phys. Rev. B 82, 075130 (2010).

[2]: Y. Klein et al., J. Solid State Chem. 184, 2333 (2011).