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Chapter 10     Introduction to Thermoelectricity 
Department of Applied Physics, Waseda University   Ichiro Terasaki 

 
10.1 Brief introduction to thermoelectrics 
In this chapter, we will review the current status of 
thermoelectrics --- the energy-conversion technology 
using thermoelectricity (Mahan 1998). Since 
thermoelectrics is a direct energy-conversion 
technology by electrons in solids, it possesses various 
advantages in harmony with our environments. We 
will begin with thermoelectric phenomena in solids, 
and briefly review thermoelectric devices and their 
applications in this section. Next in 10.2, we will 
discuss the thermodynamics of the thermoelectric 
devices, and derive a characteristic parameter called 
“figure of merit”. In 10.3, we will elaborate on the 
microscopic picture of thermoelectric materials. Then 
we will review conventional thermoelectric materials 
in 10.4, and thermoelectric oxides in 10.5. Finally we 
will summarize this chapter, and briefly comment on 
future prospects. 
 
10.1.1 the Seebeck effect and the Peltier effect 

An electron in solids is an elementary particle with a 
negative charge of e , and carries electric current. 
Since an enormous number of electrons are at 
thermal equilibrium in solids, they also carry heat 
and entropy. Thus in the presence of temperature 
gradient, they can flow from a hot side to a cold side 
to cause an electric current. This implies a coupling 
between thermal and electrical phenomena, which is 
called thermoelectric effects. 
 
The Seebeck effect and the Peltier effect are 
predominant thermoelectric effects. The Seebeck 
effect is a phenomenon that voltage (V ) is induced in 
proportion to applied temperature gradient ( T ), 
expressed as  

TSV  ,   (1) 
where S  is called the Seebeck coefficient 
(thermoelectric power, or thermopower). The Peltier 
effect is a phenomenon that the heat 

absorption/emission (Q ) is induced at the junctions 

to the leads by the applied current ( I ), expressed as 
IQ  ,   (2) 

where   is the Peltier coefficient. This is the 
reverse process to the Seebeck effect. According to the 

Onsagar relation, S  and   satisfy the relation as 
ST .   (3) 

 
In the presence of the coupling between thermal and 
electrical phenomena, it is, in principle, possible to 
convert heat into electric energy, and vice versa. Such 
a energy-conversion technology is called 
thermoelectrics. Since this energy conversion is done 
by electrons in solids, we can make full use of solids. 
First, the thermoelectric device has no moving part, 
and is operated without maintenance. Secondly, it 
produces no waste matter through conversion process. 
Thirdly, it can be processed at a micro/nano size, and 
can be implemented into electronic devices. 
 
10.1.2 Thermoelectric device and its applications 

Using the Peltier effect, the thermoelectric device can 
cool materials. It should be emphasized that 
thermoelectric cooling does not need any exchange 
media such as a freon gas, which can be a good 
alternative for a freon-gas refrigerator. Another 
advantage is that heating and cooling are quickly 
changed by changing the applied current direction. 
Thus thermoelectric refrigerator can also be a 
keep-warm container. Using this feature, the device 
can control temperature to be some value below room 
temperature, which is used for a wine cellar. 
 
Using the Seebeck effect, thermal energy (heat) can 
be converted into electric energy, which is called 
thermoelectric power generation. Figure 10.1 shows 
the schematic picture of the thermoelectric power 
generation. When the left side of the sample is heated, 
the thermoelectric voltage is induced in proportion to 
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the temperature difference. If a load is connected to 
the sample, the electric power is consumed at the load. 
Here the thermoelectric material acts as a kind of 
battery, where the thermoelectric power corresponds 
to the electro-motive force, and the resistivity 
corresponds to the internal resistance. Advantages of 
thermoelectric power generation are (i) electric power 
source without maintenance, (ii) energy recovery from 
waist heat, and (iii) long operating lifetime. Recently, 
there increase pressing needs to recover energy from 
exhaust gas of automobiles, and many researchers 
and engineers have tried to make a thermoelectric 
power generator attached with a car engine. 
 
10.2. Thermodynamics of thermoelectric device 
10.2.1 Inequilibrium thermodynamics 

Quite generally, the electric current density j  
(particle flow) and the thermal current density q  

are written as functions of the gradient of chemical 
potential  and the gradient of temperature 

)/1( T  as  

T
L

T
L 11

1211  j   (4) 

T
L

T
L 11

2221  q   (5) 

where ijL ’s are transport parameters (Callen 1985). 

The chemical potential consists of an electrostatic 

part eVe   and a chemical part c . Then the 

electric field is given as  

)(1
ce

V  E .  (6) 

However, c  cannot be observed separately in 

real experiments, and is considered to be included in 

the observed E  hereafter (Ashcroft and Mermin 
1976).  
 
Then the above equations are identical to the 
Boltzman transport equations (see 3.2) given as 

)( TS  Ej   (7) 
)(' TST  Eq   (8) 

where   the conductivity, and '  is the thermal 
conductivity for 0j . Then, for 0T , we can 

eliminate the electric field term from Eqs. (7) (8), and 
obtain 

jq  S
T
 .  (9) 

Since the left hand side is the entropy current density, 
we can say that the thermopower S is equivalent to 
the ratio of the entropy current to the electric current, 
or is equivalent to entropy per carrier. 
 
10.2.2 Heat balance equation 

Figure 10.2(a) shows a schematic picture of a 
thermoelectric cooling device, where R , S  and K  
are the net resistance, thermopower, and thermal 
conductance of the device, respectively. For simplicity, 
let us consider that all the parameters of the device 
are independent of temperature.  
 

In the cold side, the pumped heat CQ  is expressed 

as  

TKRIISTQ cC  2

2
1

, (10) 

where the second term is the Joule heat in the sample 
(for simplicity, we assume that a half of the heat goes 
to each side), and the third term is the backflow of the 

 
Figure 10.1 Schematic picture of thermoelectric 
power generation. 
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thermal current. Similarly, at the hot side, the 

emitted heat HQ  is expressed as 

TKRIISTQ HH  2

2
1

. (11) 

Thus the net work is given as 

IIRTSQQW CH )(  . 

Figure 10.2(b) shows a schematic picture of the 
thermoelectric power generator. As is similar to the 
case of the thermoelectric cooling device, the heat 
balance at the hot and cold sides are given as 

TKRIISTQ HH  2

2
1

. (12) 

TKRIISTQ CC  2

2
1

 (13) 

By connecting an external load xRRext  , we get 

the current RxTSI )1/(  . Then the output 

power P  is equal to  

2

2

)1(
)(

x
x

R
TSIVP




 , (14) 

which takes a maximum RTSP 4/)( 2
max   at 

1x . Since maxP  is determined by  /22 SS   

(   is the resistivity),  2S  is called the power 

factor. 
 
10.2.3 Figure of merit and conversion efficiency 

Let us estimate the maximum heat absorption of the 

cooling device for constant HT  and CT . Then a 

necessary condition 0/ dIdQC  gives the 

optimum current RSTI C /0  . By putting 0I  into 

Eq. (10), we get  









 T

RK
TSKTK

R
TSQ CC

C 22

2222
max

 (15) 

Then we define the figure of merit Z  as 



22 S
RK
SZ  ,  (16) 

and rewrite max
CQ  as 







  TZTKQ CC

2max

2
1

.  (17) 

Thus the maximum heat absorption is directly 
proportional to Z (or the power factor) for 0T . 
 
Next we will evaluate the lowest achievable 

temperature 0CT  for constant CQ  and HT . A 

necessary condition 0/ dIdTC  gives the 

optimum current RSTI C /01  . By putting 1I  into 

Eq. (10), we get 

 

Figure 10.2 (a) Themoelectric power generator and (b) 
thermoelectric cooling device. 
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K
QZT

K
Q

KR
TST C

C
CC  2

0

2
0

2

2
1

2
     (18) 

and the maximum temperature difference (i.e. lowest 
achievable temperature) is again directly proportional 

to Z  for 0CQ . 

 
Thirdly, we will discuss the maximum efficiency. The 
energy conversion efficiency for a cooling device is 
characterized by the coefficient of performance (COP) 
  defined as 

IRITS
TKRIIST

QQ
Q

W
Q C

CH

CC

)(
2/2







 .(19) 

Taking 0/ dId , we obtain the optimized 

current 2I  as  

)11(
2






TZR
TSI ,  (20) 

where 2/)( HC TTT  . By putting 2I  into  , 

we get 

)11(
1

max





TZT
TTZT HC   (21) 

after some calculations. For the power generation, the 
efficiency   is given as  

2//)1()1(

2/

2

2

TxZxTx
Tx

TKRIIST
IV

Q
W

HH









. (22) 

By taking 0/ dxd , we get the maximum 

efficiency is  

CH TTZT
TZT






1
)11(

max .  (23) 

 
We can take some notes on the above results. First, 

max  given by Eq. (21) and max  given by Eq. (23) 

are reduced to the Carnot efficiency as ZT . 
This is reasonable, because thermoelectric energy 
conversion is a conversion through the electron 
transport, which is an irreversible process 
accompanying the Joule heat. Second, as shown in 
Figure 10.3, the efficiency   is larger for larger 

ZT  and T . Considering that the conversion 
efficiency of a solar battery is 10-15 %, we think that 
a similar   is expected for practical use, which 

corresponds to Z 3x10-3 K-1 and T >300 K. This 
means that ZT =1.8 at 600 K is necessary. Thirdly, 
COP of a commercial refrigerator is 1.2-1.3, which 

corresponds to ZT =3-4. Thus much improvement in 
ZT  is needed to replace a freon-gas refrigerator. 
 
10.3 Microscopic theory of thermoelectric 
phenomena 

10.3.1 The Boltzmann theory 

One-electron states in a periodic potential are exactly 
solved, and the solution is known as the Bloch 

function. The Bloch function has a wave number k  
(crystal momentum) as a well-defined quantum 
number, and its energy )(k   is written as a 

function of k  (band dispersion relation).  
 
To recover a particle picture, we make a wave packet 

 
Figure 10.3 Energy conversion efficiency plotted as a 
function of ZT. 
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from the Bloch functions. Then the velocity of the 
particle is given as the group velocity of the wave as 






















zyx

k kkk
 ,,1)(1


kvk .  (24) 

To keep the particle picture, every wave constituting 
the wave packet should satisfy the relation of 

kvk m  with a constant value of m . Then we 

get kvk  m , and the effective mass (the 

inverse of the effective mass tensor) in a solid is given 
as 

jij

k i

ij kkk
v

m 







2

2

111


.  (25) 

Thus the electron in a solid behaves like a charged 
particle with the charge e , the mass m  and the 

velocity kv . 

 
Since electrons are fermions, they obey the 

Fermi-Dirac distribution 0f . Then the electric 

current density and the thermal current density are 
written as 

 kdfev 3
34

1
kkj


  (26) 

  kdfv 3
3 ))k((

4
1

kkq 


 (27) 

where kf  is the distribution function at an 

inequilibrium state. kf  is given as a solution of the 

Boltzmann equation written as 

scatteringt
ffef



 k
kkkk Ev


 (28) 

where the right hand side is the scattering term.  
 
In the case of weak perturbation, we can linearize 

kf  as kk gff  0 . We further assume the 

relaxation-time approximation to introduce the 
relaxation time   as  

k
k g
t
f


1

scattering





.  (29) 

Eventually we get  







 

















)()(

)(

0 T
T

efg
k


 

kEvkk .

 (30) 
Substituting this to Eqs. (26) (27), we obtain 

)(10
2 TK

T
eKe  Ej   (31) 

)(1
21 TK

T
eK  Eq   (32) 

where nK  is  

 













kdfK n

k
n

3

)(

0
3 ))((

4
1 

 

kvv kk .

 (33) 

Note that nK  is a second-rank tensor through 

kk vv , in general. Also note that Eqs. (31) (32) are 

identical to Eqs. (7) (8), and Onsagar’s relation given 
in Eq. (3) is readily satisfied. It is reduced to a scalar 
in the cubic symmetry, and the conductivity and the 
thermopower are given as 















 kdvfKe
k

32

)(

0
30

2  
4

1 





k . (34) 




































kdvf

kdvf

eTK
K

eT
S

k

k

32

)(

0

32

)(

0

0

1

 

))((
11











k

k k

 (35) 

The thermal conductivity is given as TK /' 2  for 
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0j , but the electron thermal conductivity is 
always measured for 0j . Thus, by substituting 

TSE  (from Eq. (9) ) to Eq. (8), we get  

))('/1(')(' 22 TSTTTS  q

,  (36) 
and the thermal conductivity observed in real 
situations   is 











'
1'

2


 TS

.  (37) 

The second term corresponds to ZT  for 0j . This 
is usually large in thermoelectric materials, and 
effectively reduces the real thermal conductivity 
given in Eq. (37). 
 
10.3.2 Asymptotic forms of thermopower 

Let us discuss thermopower of a metal intuitively. 
Consider a metal rod subject to a temperature 
gradient, as shown in Fig. 10.4. Suppose the 
temperature at one side is T1, and the temperature at 
the other side is T2 (T1>T2). Since the average 
electron velocity is larger at T1, electrons begin to 
diffuse from the side at T1 to the side at T2. Owing to 
the charge neutrality, the side at T1 is positively 
charged, whereas the side at T2 is negatively charged. 
This implies that the metal rod behaves like a 
capacitor in the temperature gradient, which is the 
origin of the thermoelectric voltage Vth. In a steady 
state,  

)()()()( 2211 TeVTTeVT thth    (38) 

is realized, where (T) is the chemical potential at 
temperature T. In the limit of T1 T2, the 
thermopower S (= dVth/dT) is written as  

Te
S





1

 (39) 
This equation means that the thermopower is the 
specific heat per carrier. This should be compared 
with Eq. (9). 
 
Eq. (39) is based on a semi-classical picture, where 
the electrons can move “smoothly” from edge to edge 
like a classical particle. A complementary picture is 
seen in the high-temperature limit, where the 
transfer energy is much smaller than the thermal 
energy. From Eq. (35), the thermopower is written as 

eTkdfve

kdfve

eT
S

k

kk










 



































3

)(

022

3

)(

022

1

k

k
 (40) 

The first term of the right hand side of Eq. (40) is of 

the order of eTk / , and goes to zero as T . 

On the contrary, the second term is rewritten with 
the entropy s as an identity of thermodynamics as 

VEN
s

T ,













  (41) 

Thus the thermopower is associated with the entropy 
per carrier, which is called the Heikes formula 
written as  

N
g

e
kS B





log

  (42) 
where g is the total number of configurations 
(Chaikin and Beni 1976). 
 
The Mott formula is perhaps most frequently used for 
the thermopower in metals. Eq. (35) can be associated 

with Eq. (34), when Fermi energy FE  is much 

higher than the thermal energy TkB . By expanding 

the Fermi-Dirac distribution function in series of 

FB ETk / , we obtain 

 
Figure 10.4 Metal in the temperature gradient. 
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













E

B E
KTkK 022

2

1 3
,  (43) 

and the thermopower is associated with the 
logarithmic derivative of   as 
















E

B

E
E

e
TkS )(log

3

22

, (44) 

which is known as the Mott formula. It should be 
emphasized that the conductivity-like function 

)(E  in Eq. (44) is a conductivity that a metal 

would show, if its Fermi energy were equal to E . Do 
not forget that )(E  cannot be observed in real 
experiments. Thus the Mott formula should be very 
carefully applied for analyses of real experiments 
(Ashcroft and Mermin 1976). 
 
10.4 Thermoelectric materials 
10.4.1 Conventional thermoelectric materials 

Thermoelectric materials so far used for practical 
applications are Bi2Te3, PbTe, and Si1-xGex. N-type 
BiSb is superior at low temperatures, but has no 

p-type counterpart. Figure 10.5 shows ZT  for 
various thermoelectric materials. Bi2Te3 shows the 
highest performance near room temperature, and 
used for cooling applications such as Peltier coolers 
commercially available. PbTe shows the highest 
performance near 500-600 K, and Si1-xGex is superior 
above 1000 K.  
 
The conventional thermoelectric materials are 
degenerate semiconductors of high mobility. Figure 
10.6 shows a schematic figure of the conductivity  , 

the thermopower S ,  the thermal conductivity   

and the power factor 2S  as a function of carrier 
concentration n (Mahan 1998). Here a simple 
parabolic band is assumed, and the electron-electron 
and electron-phonon interactions are neglected. As is 
seen in this figure, the thermopower decreases with 
n , whereas the conductivity increases with n . Then 

2S  takes a maximum at an optimal carrier 

concentration 0n , below which the conductivity is too 

low, and above which the thermopower is too small. 
Assuming the Boltzmann distribution instead of the 
Fermi-Dirac distribution, one can evaluate that the 
optimum concentration is around 1019-1020 cm-3, 
which is close to n  of a degenerate semiconductor. 
Since the conductivity is expressed as  ne , the 

only way to maximize   for 0nn   is to maximize 

 

Figure 10.5 ZT for various thermoelectric materials. 
 

 

Figure 10.6 Thermoelectric parameters as a function of 
temperature. 
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the mobility  .  

 
As shown in Fig. 10.6,   consists of the lattice part 

lattice  and the electron part el . Near 0nn  , the 

former part is dominant, and to maximize the figure 

of merit Z  is to minimize lattice  remaining 2S  

intact. In the lowest order approximation, lattice  is 

expressed as (Ashcroft and Mermin 1976) 

phsLlattice vC 
3
1

 ,  (45) 

where LC  the lattice specific heat, sv  the sound 

velocity, and ph  is the phonon mean free path. 

Then, a material containing heavy elements (giving 

small sv ), solid solutions (giving short ph ), and 

many atoms in a unit cell (giving small LC ) can be a 

good candidate. 
 
Mahan (1989) has suggested a microscopic parameter 
for good thermoelectric materials called “the B-factor” 
given as 

latticelattice

B mTmkB







2
32

3

2

2










. 

 (46) 

Note that m ,   and lattice  are independent 

parameters, whereas S ,   and   are not. 

Accordingly, a degenerate semiconductor with heavier 
effective mass, higher mobility, and lower lattice 

conductivity is extensively searched. Table 1 lists the 
thermoelectric parameters of the conventional 

thermoelectric materials (Mahan 1998).   , S  and 
  are around 1-2m  cm, 150-200  V/K, and 

15-25 mW/cmK, respectively. The B-factor is around 
0.3-0.4, which is significantly larger than that of 
other semiconductors. 
 
10.4.2 Filled skutterudite compound 

Since the discovery of Bi2Te3 in mid 50’s, 
thermoelectric materials were extensively searched in 
binary systems. In fact, many promising materials 

were found through the research, but ZT  did not 
exceed unity. Filled skutterudite CexFe3CoSb12 is the 

first unambiguous example whose ZT  exceeds unity, 
and is going to use for thermoelectric power 
generation of next generation (Sales 1997). 
 
Figure 10.7(a) shows the crystal structure of the 
skutterudite CoSb3. The unit cell of cubic symmetry 
consists of the eight sub cells whose corners are 
occupied by Co atoms. Six sub cells out of the eight 
are filled with Sb plackets, forming the valence band. 
According to the band calculation, CoSb3 is a 
narrow-gap semiconductor with an indirect gap of 0.5 
eV, which is favorable for a thermoelectric material. 
In fact, the hole mobility of CoSb3 exceeds 2000 

Table 1 Thermoelectric parameters of conventional thermoelectric materials 
 Temperature 

for maximum 
ZT (K) 

Effective 
mass  

Mobility  
(m2/Vs) 

Lattice thermal 
conductivity (W/mK) 

ZT 

Bi2Te3 300 0.2 0.12 1.5 1.3 
PbTe 650 0.05 0.17 1.8 1.1 
Si1-xGex 1100 1.06 0.01 4.0 1.3 

 

 

Figure 10.7 Crystal structures of skutterudite and filled 
skutterudite. 
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cm2/Vs at 300 K, which is much higher than that for 
Bi2Te3o (Caillat 1996).  
 
Figure 10.7(b) shows the crystal structure of the 
skutterudite CeFe3CoSb12. In the two vacant sub cells 
of the skutterudite, two Ce ions are filled. In order to 
compensate the charge valance, six Fe atoms are 
substituted for the eight Co sites, because Ce usually 
exists as trivalent. The most remarkable feature of 
this compound is that “filled€35 Ce ions reduce the 
lattice thermal conductivity several times lower than 
that for an unfilled skutterudite CoSb3. Ce ions are 
weakly bound in an oversized atomic cage so that 
they will vibrate independently from the other atoms 
to cause large local vibrations. This vibration and the 
atom in the cage are named “rattling” and “rattler”, 
respectively. As a result, the phonon mean free path 
can be as short as the lattice parameters. Namely this 
compound has a poor thermal conduction like a glass 
and a good electric conduction like a crystal, which is 
called “an electron crystal and a phonon glass€35 named 
by Slack (1995).  
 
Figure 10.8 shows how the rattlers reduce the lattice 
thermal conductivity (Sales 1997).   of CoSb3 is one 
order of magnitude higher than   of Bi2Te3, which 

means that Z  of CoSb3 is much smaller. In the filled 
skutterudite, however,   is drastically reduced, and 
the lattice thermal conductivity is nearly the same 
value of SiO2 glass. This has been a piece of evidence 

for phonon glass, but in the writer’s opinion, it should 
be carefully examined whether or not the reduction of 
  comes only from rattling. The filled Ce ions induce 
the high carrier density of the order of 1021 cm-3, 
which seriously suppresses the phonon mean free 
path through the electron-phonon interaction. Also, 
the lowest   is realized in a Ce deficient sample, 
and thus disorder also significantly affects the 
reduction of  .  In fact,   is also dramatically 
reduced upon solid solutions in CoSb3 (Anno and 
Matsubara 2000). Nevertheless, the concepts of 
rattling and phonon glass have been a strong driving 
force for thermoelectric-material search in recent 
years. Accordingly many promising materials, such as 
Sr6Ga16Ge30 (Nolas 1998) and CsBi4Te6 (Chung 2000), 
have been synthesized and identified. 
 
10.5 Oxide thermoelectrics 
10.5.1 Layered Co oxides 

As mentioned in the previous section, the 
state-of-the-art thermoelectric materials are Bi2Te3, 
PbTe, and Si1-xGex, all of which are degenerate 
semiconductor of high mobility. Since Te is scarce in 
earth, toxic, and volatile at high temperature, the 
application of Bi2Te3 and PbTe has been limited. By 
contrast, oxide is chemically stable at high 
temperature in air, and thus oxide thermoelectrics is 
expected to use in much wider area. However, most of 
oxide semiconductors show very low mobility, and has 
been thought to be out of the question.  
 
Since we discovered the large thermopower and the 
low resistivity in a NaCo2O4 single crystal (Terasaki 
1997), we have proposed that some kinds of oxides 
can be a thermoelectric material (Koumoto 2002). 
Fujita et al. (2001) have succeeded in measuring the 
thermal conductivity of a NaCo2O4 single crystal, and 

found that ZT  exceeds unity at 800 K. These 
results strongly suggest that NaCo2O4 is a promising 
candidate for a thermoelectric oxide. Another 
fascination of NaCo2O4 is existence of various related 
oxides. Following NaCo2O4, Ca3Co4O9 (Funahashi and 

 
Figure 10.8 Effect of rattling. 
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Mastubara 2000, Shikano and Funahashi 2003), 
(Bi,Pb)2Sr2Co2O8 (Funahashi and Mastubara 2001), 
TlSr2Co2Oy (Hebert 2001), and (Hg,Pb)Sr2Co2Oy 
(Maignan 2002) have been found to show good 
thermoelectric performance. Some single crystals 

show 1ZT  at 1000 K. As shown in Fig. 10.9, the 
CdI2-type hexagonal CoO2 layer is common to these 
cobalt oxides, which reminds us of the CuO2 plane in 
high-Tc superconductors (Tokura and Arima 1990). 
Thus the hexagonal CoO2 layer should be a key 
ingredient for the unusually high thermoelectric 

performance of the layered Co oxides.  
 
Not all the transition-metal oxides can be a good 
thermoelectric material. Figure 10.10 shows the 
resistivity and the thermopower of various layered 
transition-metal oxides. The layered Co oxide 
NaCo2O4 shows as low resistivity as the layered Cu 
oxide Bi2Sr2CaCu2O8 (one of high-Tc superconductors), 
whereas the layered Ni and Mn oxides show 
hopelessly high resistivity. For thermopower, the 
difference between the Co oxide and the other oxides 
is more remarkable. NaCo2O4 shows 100  V/K at 

room temperature, while the layered Cu, Ni, and Mn 
oxides show very small thermopower of the order of 
1-10  V/K. Thus the most peculiar feature of the 

layered Co oxide is the unusually high thermopower. 
  
10.5.2 Physics of the layered Co oxides 

As an origin of the large thermopower, Koshibae, 
Tsutsui and Maekawa (2000) proposed an extended 
Heikes formula for transition-metal oxides written as  

     
1

logB

p
p

g
g

C
kS

B

A


   (47) 

where gA and gB are the degeneracy of the electron 
configuration of A and B ions, C is the charge 
difference between A and B ions, and p is the atomic 

content of the A ion. Since 
p

p
g
gk

B

A

1
logB  is equal 

to the entropy per carrier, Eq. (47) is a special case of 
Eq. (9).  
 
Let us apply the above formula to NaCo2O4. 
Assuming that Na and O exist as Na+ and O2- in 
NaCo2O4, we expect that Co ions exists as Co3+ and 
Co4+ with a ratio of Co3+:Co4+=1:1. Then p for 
NaCo2O4 is equal to 0.5, and S for p=0.5 is simply 

reduced to 
B

A

g
g

C
kS logB . Magnetic measurements 

reveal that the Co4+ and Co3+ ions are in the low spin 

 
Figure 10.9 Crystal structures of the layered cobalt 
oxides. 
 

 
Figure 10.10 Thermoelectric properties of layered 
transition-metal oxides. 
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state in NaCo2O4. As shown in the upper part of Fig. 
10.11, the configuration of the low-spin-state Co3+ is 
(t2g)6, whose entropy is zero. On the other hand, the 
low-spin-state Co4+ has a hole in the t2g states, which 
is six-fold degenerate (two from spin and three from 
t2g orbitals) to carry large entropy of kBlog6. Suppose 
electric conduction occurs by exchanging Co3+ and 
Co4+, as is shown in the lower part of Fig. 10.11. Then 
a hole on Co4+ can carry a charge of +e with entropy 
of kBlog6, which causes a large thermopower of 
kBlog6/e (~150V/K). This is very close to the 
high-temperature value of the thermopower. Note 
that carriers in degenerate semiconductors have no 
internal degrees of freedom: they can only carry 
entropy due to their kinetic energy.  In this sense, a 
hole in NaCo2O4 can carry much larger entropy than 
degenerate semiconductors, which leads us a new 
design for thermoelectric materials. 
 
Although Koshibae’s theory has successfully 
explained the high-temperature limit thermopower of 
NaCo2O4, the remaining problem is not so simple. 
The thermopower of NaCo2O4 is 100 V/K at 300 K, 
which is about 2/3 of kBlog6, which means that the 
large amount of entropy of kBlog6 in the 
high-temperature limit (~104 K) survives down to 102 
K. We think it important that NaCo2O4 shows no 
structural, electric, and magnetic transitions from 2 
to 1000 K. Usually various phase transitions occur in 
order to release an excess entropy per cites in the 
strongly correlated systems. Then, if all the phase 
transition were blocked, the large entropy would 
inevitably point to the conducting carriers (Terasaki 
2002).  
 
10.6 Summary and future prospects 
In this chapter, we have briefly reviewed the 
thermoelectric phenomena and the thermoelectrics. 
Since thermoelectrics is a direct energy conversion 
between heat and electric power, it has various 
advantages. It can get some electric energy back from 
waste heat, and can cool materials without an 

exchange media like a freon gas. Thus this technology 
has attracted a renewed interest from the viewpoint 
of increasing needs for environment-friendly energy 
source. In the last decade, new thermoelectric 
materials have been searched extensively, some of 
which have better thermoelectric properties than the 
conventional thermoelectric materials.  
 
From a viewpoint of basic science, the thermoelectric 
power is an entropy (or heat) carried by an electron. 
This is more or less controversial terminology, 
because the entropy and heat are a concept in the 
macroscopic world, whereas the electron is a concept 
in the microscopic world. Thus a new thermoelectric 
effect is lying near the boundary between microscopic 
and macroscopic worlds, which will give a new insight 
or direction to condensed matter science.  
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